Diphosphorus Tetraiodide. A Valuable Reagent in Cyclopropane Chemistry

J. N. Denis and Alain Krief"

Department of Chemistry, Faculte's Universitaires Notre-Dame de la Paix, 67, rue de Bruxelles, B-5000 - *Namur, Belgium*

The behaviour of P₂I₄ and PI₃ towards cyclopropyl alcohols, cyclopropyl ketones, α -seleno ketones, and ozonides is reported.

We have recently studied the reactivity of cyclopropyl alcohols having a hetero substituent in the cyclopropane ring with P_2I_4 or PI_3^{1-3} and we have found that small structural variations in the starting material lead to a dramatic change in the reaction pathway (Scheme 1).

The variety of results caused us to look in more detail at the reactivity of PI_3 and P_2I_4 with non-functionalized cyclopropyl alcohols.

We found that on reaction with P_2I_4 , the primary and secondary cyclopropyl alcohols **(la)** and **(lb)** produce the corresponding alkyl iodides **(2a)** and **(2b)** (71 and **76%** yield, respectively) together with small amounts (4 and 10%, respectively) of homoallyl iodides³ resulting from opening of the cyclopropane ring (Scheme **2,** Table 1). The reaction **with** the primary alcohol $(1a)$ (CH₂Cl₂, 20 °C, 20 h) is quite slow but is

Scheme 1. Reagents and conditions: i, P_2I_4 –CH₂Cl₂, 55 °C, 24 h (this work); ii, PI_3 –Et₃N–CH₂Cl₂, 20 °C, 1 h (ref. 2); iii, PI_3 –
Et₃N–CH₂Cl₂, 20 °C, 1 h (this work); iv, PI_3 –Et₃N–CH₂Cl₂, 0 **0.5 h (ref. 3).**

Scheme 2. *Reagents and conditions:* **i**, P_2I_4 (0.5 mol. equiv.), CH_2Cl_2 ; **ii,** P_2I_4 (0.55 mol. equiv.), acetone, 20 $^{\circ}$ C.

much faster with the secondary alcohol (1b) $(-10 \degree C, 1.5 \text{ h})$. The tertiary alcohol (1c) reacts even faster $(-20 \degree C, 1 \text{ h})$ but produces the homoallyl iodide (3c) exclusively. All attempts to trap the cyclopropyl iodide (2c) were unsuccessful. With (lc), the reaction must be performed at low temperatures $(-20 \degree C)$ since at higher temperatures 2,5-di-iodo-2-methylpentane results from the addition of hydrogen iodide across the carbon-carbon double bond of (3c) [2,5-di-iodo-2-methylpentane/(3c) ratio $1/4$, $2/3$, and $1/0$ when the reaction is performed at 20 "C for 0.2, 1, or 18 h, respectively]. Cyclopropyl alkyl iodides **(2a)** and (2b) are fairly stable at 20 *"C* but (2b) rearranges rapidly on heating to the homoallyl iodide (3b) (60 *"C,* 0.5 h, 100% yield).?

From these results, it appears that the cyclopropane participation increases with increasing stability of the incipient positive charge α to the cyclopropane ring and this seems to be consistent with reported results.^{4,5}

One would therefore expect the cyclopropane ring to open when cyclopropyl aldehydes or ketones are treated with P_2I_4 and that proved to be the case. \ddagger

Thus, we found that the cyclopropyl aldehyde (4a) and ketones (4b, *c)* (Scheme 2, Table 1) reacted smoothly **(20** "C, ≤ 2 h) with P₂I₄ (0.5 mol. equiv.), provided acetone is used as the solvent, to produce the corresponding γ -iodo carbonyl compounds **(5)** in good yields.

A higher temperature (80 "C) and longer reaction time (24 h) are required when acetone is replaced by carbon tetrachloride and under these conditions we observed a dramatic lowering in the yield of (5b) $[47\%]$ in the case of (4b)].

In the course of this work we also examined the reaction of the α -selenocyclopropyl ketone **(6)** with P_2I_4 **(1 mol. equiv.).** The reaction is fast and occurs at 20 $^{\circ}$ C in both acetone and methylene dichloride. We were rather surprised to obtain the y-iodo ketone **(8)** (95 and 93 % yield, respectively) in which the selenyl moiety is no longer present (Scheme 2, Table 1).

The mechanism of this reaction was unknown to us. We proposed the γ -iodo α -seleno ketone (7) as an intermediate and thus we were interested in the reactivity of P_2I_4 towards aliphatic a-selenoketones.

We observed that **3-methylselenoundecan-2-one** and its phenylseleno analogue are readily reduced (20 $^{\circ}$ C, 0.4 h, \geq 80% yield) to the corresponding undecanone $(P_2I_4, 0.5 \text{ mol.})$ equiv.) in a reaction which parallels the one which we have recently reported for α -halogeno ketones.⁷ This is to our knowledge the first reduction of an α -seleno ketone to be described.

All the reactions reported work equally well with **PI,** under similar experimental conditions.

Since PI_3 and P_2I_4 are powerful reagents which react with a large variety of functional groups,¹ we were interested to

Scheme 3. Reagents and conditions: i, 2 O₃, CH₂Cl₂, -78 °C; ii, 1 mol. equiv. P₂I₄ 89% yield of (6), 2 mol. equiv. PI₃ 86% yield of (6); iii, 2 mol. equiv. P₂I₄, -78 °C, 0.1 h then 20 °C, 1 h, 'one-pot rea

determine if they show any chemoselection. Our preliminary results are given in Scheme 3.

Thus the vinylcyclopropane *(9)* was subjected to the action of ozone. The resulting product (10) bearing an ozonide and a selenoxide function was allowed to react further with P_2I_4 or PI₃. Depending upon the conditions used (1 mol. equiv. P_2I_4 at -78 °C, 0.75 h or 2 mol. equiv. of P_2I_4 , -78 °C to 20 °C, 1 h), we chemoselectively obtained a high yield of the cyclopropyl ketone **(6)** or the γ -iodo ketone **(8)**.

Moreover this example shows how versatile these phosphorus reagents can be. The following reactions have been performed in a step-wise manner: reduction of an ozonide, reduction of **a** selenoxide, ring opening of an activated cyclopropane, and reduction of an α -seleno ketone. The interest of the reported reactions is enhanced by the solubility in water of the inorganic by-products containing the phosphorus atom which are easily removed from the organic compounds.

Received, 24th November 1982; Com. 1347

References

- 1 A. Krief, 'Diphosphorus Tetraiodide **(P2T,)** a Powerful Deoxygenator,' Aldrich Technical Information 191; P_2I_4 is available from the Aldrich Co., product no. 21865-0.
- 2 S. Halazy and A. Krief, *J. Chem. SOC., Chem. Commun.,* 1979, 1 136 and references cited therein.
- 3 S. Halazy, W. Dumont, and A. Krief, *Tetrahedron Lett.,* 1981, 4737.
- **4** M. Julia, **S.** Julia, and R. Guegan, *Bull. SOC. Chirn. Fr.,* 1960, 1072 and references cited therein; **S.** F. Brady, M. A. Ikon, and W. **S.** Johnson, *J. Am. Chem. SOC.,* 1968,90,2882.
- 5 H. Suzuki and T. Fuchita, *Nippon Kagaku Kaishi,* 1977, 11, 1679.
- 6 F. 0. Miller and D. R. McKean, *J. Org. Chem.,* 1981,46,2412 and references cited therein.
- 7 J. N. Denis and **A.** Krief, *Tetrahedron Lett.,* 1981, 1431.

⁷ The *E* isomer predominates.

[#]During the course of this work, a similar observation was reported (ref. 6) by Miller on the reaction of Me,SiI with cyclo- propyl ketones.